کاربردهای هوش مصنوعی
سیستم های خبره (Expert Sytems)
در یک تعریف کلی میتوان گفت سیستمهای خبره، برنامههای کامپیوتریای هستند که نحوه تفکر یک متخصص در یک زمینه خاص را شبیهسازی میکنند. در واقع این نرمافزارها، الگوهای منطقیای را که یک متخصص بر اساس آنها تصمیمگیری میکند، شناسایی مینمایند و سپس بر اساس آن الگوها، مانند انسانها تصمیمگیری میکنند.
یکی از اهداف هوش مصنوعی، فهم هوش انسانی با شبیهسازی آن توسط برنامههای کامپیوتری است. البته بدیهی است که “هوش” را میتوان به بسیاری از مهارتهای مبتنی بر فهم، از جمله توانایی تصمیمگیری، یادگیری و فهم زبان تعمیم داد و از اینرو واژهای کلی محسوب میشود.
بیشتر دستاوردهای هوش مصنوعی در زمینه تصمیمگیری و حل مسئله بوده است که اصلیترین موضوع سیستمهای خبره را شامل میشوند. به آن نوع از برنامههای هوش مصنوعی که به سطحی از خبرگی میرسند که میتوانند به جای یک متخصص در یک زمینه خاص تصمیمگیری کنند، Expert Systems یا سیستمهای خبره گفته میشود. این سیستمها برنامههایی هستند که پایگاه دانش آنها انباشته از اطلاعاتی است که انسانها هنگام تصمیمگیری درباره یک موضوع خاص، براساس آنها تصمیم میگیرند. روی این موضوع باید تأکید کرد که هیچیک از سیستمهای خبرهای که تاکنون طراحی و برنامهنویسی شدهاند، همهمنظوره نبودهاند و تنها در یک زمینه محدود قادر به شبیهسازی فرآیند تصمیمگیری انسان هستند.
به محدوده اطلاعاتی از الگوهای خِبرگی انسان که به یک سیستم خبره منتقل میشود Task Domain گفته میشود. این محدوده، سطح خبرگی یک سیستم خبره را مشخص میکند و نشان میدهد که آن سیستم خبره برای چه کارهایی طراحی شده است. سیستم خبره با این Task ها یا وظایف میتواند کارهایی چون برنامهریزی، زمانبندی، و طراحی را در یک حیطه تعریف شده انجام دهد.
به روند ساخت یک سیستم خبره، Knowledge Engineering یا مهندسی دانش گفته میشود. یک مهندس دانش باید اطمینان حاصل کند که سیستم خبره طراحی شده، تمام دانش مورد نیاز برای حل یک مسئله را دارد. طبیعتاً در غیراینصورت، تصمیمهای سیستم خبره قابل اطمینان نخواهند بود.
ساختار یک سیستم خبره
هر سیستم خبره از دو بخش مجزا ساخته شده است: پایگاه دانش و موتور تصمیمگیری.
پایگاه دانش یک سیستم خبره از هر دو نوع دانش مبتنی بر حقایق (Factual) و نیز دانش غیرقطعی (Heuristic) استفاده میکند. Factual Knowledge، دانش حقیقی یا قطعی نوعی از دانش است که میتوان آن را در حیطههای مختلف به اشتراک گذاشت و تعمیم داد؛ چراکه درستی آن قطعی است.
در سوی دیگر، Heuristic knowledge قرار دارد که غیرقطعیتر و بیشتر مبتنی بر برداشتهای شخصی است. هرچه حدسها یا دانش هیورستیک یک سیستم خبره بهتر باشد، سطح خبرگی آن بیشتر خواهد بود و در شرایط ویژه، تصمیمات بهتری اتخاذ خواهد کرد.
دانش مبتنی بر ساختار Heuristic در سیستمهای خبره اهمیت زیادی دارد این نوع دانش میتواند به تسریع فرآیند حل یک مسئله کمک کند .
البته یک مشکل عمده در ارتباط با به کارگیری دانشHeuristic آن است که نمیتوان در حل همه مسائل از این نوع دانش استفاده کرد.
از شما دوستان عزیز که این مطلب آموزشی را دنبال نموده اید تشکر می کنیم و شما را دعوت میکنیم که برای فراگیری هوش مصنوعی مطالب ما را دنبال کنید.این مطالب برای افزایش دانش شما در سایت قرار داده شده و کمک زیادی در یادگیری شما در انجام پروژه هوش مصنوعی خواهد نمود.
فریلنسر هستم و مهارت انجام پروژه ای را دارم!
اگر شما فریلنسر هستید و توانایی انجام پروژه ای را در یک رشته یا حوزه ای خاص دارید برای فعالیت در سایت کافه پروژه و کسب درآمد می توانید در سایت ثبت نام کنید و پروژه هایی با مهارت انتخاب خود را مشاهده کنید.جهت ثبت نام و ثبت رزومه خود در سایت از طریق دکمه پایین صفحه در سایت عضو شوید:
نحوه سفارش پروژه در سایت کافه پروژه :
اگر پروژه ای دارید که میخواهید آن را برون سپاری کنید کافی است در سایت کافه پروژه ثبت نام کنید و پروژه خود را ثبت نمایید.پروژه شما هر چه که باشد حتما مجری برای آن وجود دارد.جهت ثبت نام و ثبت سفارش پروژه خود برروی دکمه زیر کلیک نمایید.
بدون دیدگاه