چالش های بنیادین هوش مصنوعی
البته امروزه هوش مصنوعی به واقعیت نزدیک شده است و تقریباً میتوان گفت وجود دارد، اما دلایل اساسی متعددی وجود دارند که نشان میدهند چرا هنوز شکل تکامل یافته هوشی که تورینگ تصور میکرد، به وقوع نپیوسته است. به طور کلی خود نظریه تورینگ مخالفانی جدی دارد. بعضی از این منتقدان اصلاً هوش ماشینی را قبول ندارند و برخی دیگر صرفاً کارآمدی آزمون تورینگ را برای اثبات هوشمندی زیر سؤال میبرند. یکی از مهمترین مباحث مطرح در این زمینه، موضوع شبیهسازی است. غالباً پرسیده میشود آیا صرف اینکه ماشینی بتواند نحوه صحبت کردن انسان را شبیهسازی کند، به معنی آن است که هوشمند است؟ به عنوان مثال، شاید شما هم درباره روباتهای نرمافزاری که میتوانند چت کنند (Chatter Bots) چیزهایی شنیده باشید. این روباتها از روشهای تقلیدی استفاده میکنند و به تعبیری، نمونه مدرن و اینترنتی آزمون تورینگ هستند.
مثلاً روبات ELIZA یکی از اینهاست. این روبات را ژوزف وایزن بام، یکی دیگر از پژوهشگران نامدار این حوزه اختراع کرد. الیزا در برخی مکالمات ساده میتواند طرف مقابل خود را به اشتباه بیندازد. طوری که مخاطب ممکن است فکر کند درحال گپ زدن با یک انسان است. البته الیزا هنوز نتوانسته است آزمون تورینگ را با موفقیت پشت سر بگذارد. با این حال تکنیکهای شبیهسازی مورد انتقاد گروهی از دانشمندان است. یکی از مشهورترین انتقادات در این زمینه را فیلسوفی به نام جان سیرل (John Searle) مطرح کرده است. او معتقد است بحث هوشمندی ماشینهای غیربیولوژیک اساساً بیربط است و برای اثبات ادعای خود مثالی میآورد که در مباحث تئوریک هوش مصنوعی <بحث اتاق چینی> نامیده میشود. سیرل ابتدا نقد خود درباره هوش ماشینی را در ۱۹۸۰ مطرح کرد و سپس آن در مقاله کاملتری که در ۱۹۹۰ منتشر کرد، بسط داد.
ماجرای اتاق چینی به این صورت است: فرض کنید داخل اتاقی یک نفر نشسته است و کتابی از قواعد سمبولهای زبان چینی در اختیار دارد. برای این فرد عبارات – سمبولهای – چینی روی کاغذ نوشته میشود و از زیر درِ اتاق به داخل فرستاده میشود. او باید با مراجعه به کتاب قواعد پاسخ مناسب را تهیه کند و روی کاغذ پس بفرستد. اگر فرض کنیم کتاب مرجع مورد نظر به اندازه کافی کامل است، این فرد میتواند بدون اینکه حتی معنی یک نماد از سمبولهای زبان چینی را بفهمد، به پرسشها پاسخ دهد. آیا میتوان به این ترتیب نتیجه گرفت که پاسخ دهنده هوشمند است؟
استدلال اصلی این منتقد و دیگر منتقدان موضوع شبیهسازی این است که میتوان ماشینی ساخت (مثلاً یک نرمافزار لغتنامه) که عبارات و اصطلاحات را ترجمه کند. یعنی ماشینی که کلمات و سمبولهای ورودی را دریافت و سمبولها و کلمات خروجی را تولید کند؛ بدون اینکه خود ماشین معنی و مفهوم این سمبولها را درک کند. بنابراین آزمون تورینگ
حتی در صورت موفقیت نیز نمیتواند ثابت کند که یک ماشین هوشمند است .
ماشینها بتوانند با دنیای پیرامون خود کنش و واکنش داشته باشند، آنگاه میتوانند فکر کنند. منظور این است که کامپیوترها نیز مانند ما دارای حس بینایی، شنوایی، لامسه و حسهای دیگر باشند. در این صورت، ترکیب همزمان ” پاسخهای تقلیدی ” با ” واکنش مناسب به محیط ” یعنی همان ” هوشمندی ” اتفاقاً کسی مانند جان سیرل نیز تفکرات مشابهی دارد؛ با این تفاوت که به طور خاص او شکل ایدهآل کنش و واکنش مورد نیاز را همان تعامل بیولوژیکی میداند.
انتقادات دیگری نیز به آزمون تورینگ وارد میشود. ازجمله اینکه ممکن است یک ماشین هوشمند باشد، ولی نتواند همچون انسان ارتباط برقرار کند. دیگر اینکه، در آزمون تورینگ فرض میشود که انسان مورد آزمایش – یکی از دو نفری که داخل اتاق در بسته به سؤالات پاسخ میدهد – به اندازه کافی هوشمند است. در حالی که با استناد به استدلال خود تورینگ میتوان نتیجه گرفت که خیلی از افراد مانند بچهها و افراد بیسواد در این آزمون مردود میشوند؛ نه به دلیل هوشمندی ماشین، بلکه به دلیل نداشتن مهارت کافی در ارتباطگیری از طریق مکاتبه.
مسئله دیگری که در بحث هوش مصنوعی اهمیت دارد، موضوع <قالب و محتوا> است. منظور از قالب یا Context در اینجا، ظرفی است که محتوا داخل آن قرار میگیرد.
یکی از پایههای هوشمندی انسان توجهی است که او به قالب محتوا – و نه صرفاً خود محتوا – دارد. به عنوان مثال، وقتی میگوییم “شیر”، این کلمه به تنهایی معانی متفاوتی دارد، ولی هنگامی که همین واژه داخل یک جمله قرار میگیرد، فقط یک معنی صحیح دارد. انسان میتواند معانی کلمات را نه فقط به صورت مجرد، بلکه با دنبال کردن نحوه وابستگیشان به جمله تشخیص دهد. مشابه همین هوشمندی، در تمام حسهای پنجگانه انسان وجود دارد. به عنوان مثال، از نظر علمی ثابت شده است که گوش انسان میتواند هنگام توجه به صحبتهای یک انسان دیگر در محیطی شلوغ، کلمات و عباراتی را که نمیشنود، خودش تکمیل کند یا چشم انسان میتواند هنگام مشاهده یک تصویر، قسمتهای ناواضح آن را با استفاده از دانستههای بصری قبلی خود تکمیل کند.
از این رو کارشناسان معتقدند، دانش پیشزمینه یا ” آرشیو ذهنی” یک موجود هوشمند نقش مؤثری در هوشمندی او بازی میکند. در حقیقت منشأ پیدایش برخی از شاخههای مدرن و جدید دانش هوش مصنوعی همچون ” سیستمهای خبره ” و ” شبکههای عصبی ” همین موضوع است و اساسا با این هدف پدید آمدهاند که بتوانند به ماشین قدرت آموختن و فراگیری بدهند؛ هرچند که هر یک از این شاخهها، از پارادایم متفاوتی برای آموزش به ماشین استفاده میکنند و همین تفاوتها مبنا و اساس دو جریان فکری عمده در محافل علمی مرتبط با هوش مصنوعی را پدید آوردهاند.
از شما دوستان عزیز که این مطلب آموزشی را دنبال نموده اید تشکر می کنیم و شما را دعوت میکنیم که برای فراگیری هوش مصنوعی مطالب ما را دنبال کنید.این مطالب برای افزایش دانش شما در سایت قرار داده شده و کمک زیادی در یادگیری شما در انجام پروژه هوش مصنوعی خواهد نمود.
فریلنسر هستم و مهارت انجام پروژه ای را دارم!
اگر شما فریلنسر هستید و توانایی انجام پروژه ای را در یک رشته یا حوزه ای خاص دارید برای فعالیت در سایت کافه پروژه و کسب درآمد می توانید در سایت ثبت نام کنید و پروژه هایی با مهارت انتخاب خود را مشاهده کنید.جهت ثبت نام و ثبت رزومه خود در سایت از طریق دکمه پایین صفحه در سایت عضو شوید:
نحوه سفارش پروژه در سایت کافه پروژه :
اگر پروژه ای دارید که میخواهید آن را برون سپاری کنید کافی است در سایت کافه پروژه ثبت نام کنید و پروژه خود را ثبت نمایید.پروژه شما هر چه که باشد حتما مجری برای آن وجود دارد.جهت ثبت نام و ثبت سفارش پروژه خود برروی دکمه زیر کلیک نمایید.
بدون دیدگاه