هوش مصنوعی

عملیات شبکه‌های عصبی

تا اینجا تمام توجه ما معطوف ساختار درونی یک نرون مصنوعی یا المان پردازشی بود. اما بخش مهم دیگری در مراحل طراحی یک شبکه  عصبی نیز وجود  دارد . در  واقع هنر یک طراح شبکه‌های عصبی می‌تواند در چگونگی ترکیب نرون‌ها در یک  شبکه ( Neuran  Clustering ) ، متجلی شود.علوم بیولوژی نشان داده‌اند که کلاسترین نرون‌ها  در

شبکه عصبی مغز ما به‌گونه‌ای است که ما را قادر می‌سازد تا اطلاعات را به‌ صورتی پویا، تعاملی و خودسامان (Selforganizing) پردازش کنیم . در شبکه‌های عصبی بیولوژیک، نرون‌ها در ساختار‌ی سه بعدی به یکدیگر اتصال یافته‌اند. اتصالات بین نرون‌ها در شبکه‌های عصبی بیولوژیک آنقدر زیاد و پیچیده‌است که به هیچ وجه نمی‌توان شبکه مصنوعی مشابهی طراحی کرد. تکنولوژی مدارات مجتمع امروزی به ما امکان می‌دهد که شبکه‌های عصبی را در ساختار‌های دو بعدی طراحی کنیم. علاوه بر این، چنین شبکه‌های مصنوعی دارای تعداد محدودی لایه و اتصالات بین نرون‌ها خواهند بود. بدین ترتیب، این واقعیات و محدودیت‌های فیزیکی تکنولوژی فعلی، دامنه کاربردهای شبکه‌های عصبی مبتنی‌بر تکنولوژی سیلیکونی را مشخص می‌سازند.

 

هوش مصنوعی

ساختار شبکه‌های عصبی امروزی، از لایه‌های نرونی تشکیل شده است. در چنین ساختاری، نرون‌ها علاوه بر آنکه در لایه خود به شکل محدودی به یکدیگر اتصال داده شده‌اند، از طریق اتصال بین لایه‌ها نیز به نرون‌های طبقات مجاور ارتباط داده می‌شوند. در شکل ۱۰ نمونه‌ای از ساختار لایه‌ای یک شبکه عصبی مصنوعی نمایش داده شده است (تعداد اتصالات ممکن بین نرون‌ها را در چنین ساختاری با تعداد اتصالات بین نرون‌های مغز انسان، مقایسه کنید).

در این توپولوژی، گروهی از نرون‌ها از طریق ورودی‌های خود با جهان واقعی ارتباط دارند. گروه دیگری از نرون‌ها نیز از طریق خروجی‌های خود، جهان خارج را می‌سازند. در واقع این”جهان خارج” تصویری است که شبکه عصبی از ورودی خود می‌سازد یا می‌توان چنین گفت که جهان خارج “تصوری” است که شبکه عصبی از ورودی خود دارد. خلاصه آنکه در توپولوژی فوق، مابقی نرون‌ها از دید پنهان هستند.

تلاش محققان در زمینه شبکه‌های عصبی نشان داده است که شبکه‌های عصبی، چیزی بیشتر از یک مشت نرون که به یکدیگر اتصال داده شده‌اند، هستند. حتی گروهی از محققان سعی داشته‌اند که از اتصالات تصادفی برای ارتباط دادن نرون به یکدیگر استفاده کنند که در این زمینه به نتایج جالب توجهی دست نیافتند. امروزه مشخص شده است که در ساده‌ترین مغز‌های بیولوژیک مانند مغز مارها هم ارتباطات بین نرون‌ها بسیار ساخت‌یافته است. در حال حاضر یکی از ساده‌ترین روش‌های ارتباط دهی نرون‌ها در شبکه‌های عصبی، آن است که ابتدا نرون‌ها در گروه‌های مشخصی به صورت لایه‌های نرونی سازمان‌دهی می‌شوند و پس از تامین ارتباطات بین‌نرونی در هر لایه، ارتباطات بین لایه‌ها نیز برقرار می‌شوند

اگرچه در کاربردهای مشخصی می‌توان با موفقیت از شبکه‌های عصبی تک لایه استفاده کرد، اما رسم بر آن است که شبکه‌های عصبی حداقل دارای سه لایه باشند (همانطور که قبلاً اشاره شد، لایه ورودی، لایه خروجی و نهایتاً لایه پنهان یا لایه میانی).

در بسیاری از شبکه‌های عصبی، اتصالات بین‌نرونی به گونه‌ای است که نرون‌های لایه‌های میانی، ورودی خود را از تمام نرون‌های لایه پایینی خود (به طور معمول لایه نرون‌های ورودی) دریافت می‌کنند. بدین ترتیب در یک شبکه عصبی، سیگنال‌ها به تدریج از یک لایه نرونی به لایه‌های بالاتر حرکت می‌کنند و در نهایت به لایه آخر و خروجی شبکه می‌رسند. چنین مسیر در اصطلاح فنی Feed Forward نامیده می‌شود. ارتباطات بین‌نرونی در شبکه‌های عصبی از اهمیت بسیار زیادی برخوردار هستند و به نوعی قدرت یک شبکه عصبی را تعیین می‌کنند. قاعده آن است که ارتباطات بین نرونی را به دو گروه تقسیم‌بندی می‌کنند. یک نوع از ارتباطات بین نرونی، به‌گونه‌ای هستند که باعث جمع شدن سیگنال در نرون بعدی می‌شوند. گونه دوم ارتباطات بین نرونی باعث تفریق سیگنال در نرون بعدی می‌شوند. در اصطلاح محاوره‌ای گروهی از ارتباطات انگیزش ایجاد می‌کنند و گروه دیگر ممانعت به عمل می‌آورند.

در مواردی، نرون مشخصی از شبکه عصبی تمایل دارد که سیگنال دیگر نرون‌های لایه خود را نادیده بگیرد. چنین حالتی به‌طور معمول در لایه خروجی ایجاد می‌شود. به عنوان مثال، در کاربردهای تشخیص متن (OCR)، فرض کنید که احتمال آنکه کاراکتر مورد شناسایی، حرف P باشد برابر با ۸۵ درصد تعیین شده است و به همین ترتیب احتمال آنکه کاراکتر مورد نظر حرف F باشد، ۶۵‌ درصد تخمین زده است. در این وضعیت، سیستم باید کاراکتری را برگزیند که دارای درصد احتمال بزرگ‌تر است. در نتیجه در این شبکه عصبی، نرون‌هایی که خروجی F را تجویز می‌کنند، باید نادیده گرفته ‌شوند یاInhibit شوند. به چنین فرایندی، Lateral Inhibition گفته می‌شود.

هوش مصنوعی

نوع دیگری از ارتباط بین نرونی در شبکه‌های عصبی به ارتباط بازخورد یا Feedback معروف است. در این نوع از ارتباطات، خروجی یک لایه نرونی به لایه قبلی (یا به لایه‌ای که چند مرحله پایینتر است) اتصال داده می‌شود. در شکل ۱۱ نمونه‌ای از یک شبکه عصبی نمایش داده شده که در آن از ارتباط بازخوردی استفاده شده است. در نرم‌افزارهای پیشرفته شبکه‌های عصبی، کاربر و طراح شبکه عصبی می‌تواند نوع ارتباطات بین نرون‌ها و لایه‌های آنها را تعیین کند.

از شما دوستان عزیز که این مطلب آموزشی را دنبال نموده اید تشکر می کنیم و شما را دعوت میکنیم که برای فراگیری هوش مصنوعی مطالب ما را دنبال کنید.این مطالب برای افزایش دانش شما در سایت قرار داده شده و کمک زیادی در یادگیری شما در انجام پروژه هوش مصنوعی خواهد نمود.

فریلنسر هستم و مهارت انجام پروژه ای را دارم!

اگر شما فریلنسر هستید و توانایی انجام پروژه ای را در یک رشته یا حوزه ای خاص دارید برای فعالیت در سایت کافه پروژه و کسب درآمد می توانید در سایت ثبت نام کنید و پروژه هایی با مهارت انتخاب خود را مشاهده کنید.جهت ثبت نام و ثبت رزومه خود در سایت از طریق دکمه پایین صفحه در سایت عضو شوید:

نحوه سفارش پروژه در سایت کافه پروژه :

اگر پروژه ای دارید که میخواهید آن را برون سپاری کنید کافی است در سایت کافه پروژه ثبت نام کنید و پروژه خود را ثبت نمایید.پروژه شما هر چه که باشد حتما مجری برای آن وجود دارد.جهت ثبت نام و ثبت سفارش پروژه خود برروی دکمه زیر کلیک نمایید.

بدون دیدگاه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *